Feeds:
Posts
Comments

Posts Tagged ‘HFpEF’

Doppler E/A ratio reversal is probably the most reported abnormality in clinical echocardiography. We are also pleased to label it as a grade 1 diastolic dysfunction. Making a significant population who come for regular health checks anxious and worried.

Sharing a presentation from the Annual conference ECHO INDIA 2019, I participated in a symposium on Diastolic dysfunction.

Topic : Issues in diagnosing grade 1 diastolic dysfunction: Pearls and Perils

How did we get into this academic trap? Should we continue this practice?

The current ASE guidelines 2016 have a clear message. It has taken off the E/A ratio from the Initial screening for diastolic dysfunction.

Summary & Final message 

Are we ready for the change? By understanding a simple concept, one can reduce the incidence of indiscriminate diagnosis of grade 1 diastolic dysfunction.

  • E/A ratio apparently has a no role in diagnosing diastolic dysfunction in the normal population who have normal EF %.
  • Hence, never report E/A ratio in Isolation as grade 1 diastolic dysfunction.
  • However, in patients with HFrEF it does help in triaging diastolic dysfunction.
  • Always look for symptoms and 2D features  (Unexplained dyspnea, LA enlargement, LVH ) before considering diastolic dysfunction.

*For advanced readers and researchers grade 1 diastolic dysfunction does have a deep meaning and always continues to puzzle.

Patient corner

For all those anxious patients who ramble around with a report of grade 1 diastolic dysfunction, I can assure you this. Please realize, 9/10 times, this is just a decorative echocardiography abnormality meant to add some spice to the report  does not have any significance.

*Will post a PPT presentation shortly.

Read Full Post »

Heart failure has been classified in many ways, with prevailing levels of our knowledge and ignorance. It is based on a variety of factors like rapidity of onset, etiology, chambers involved, hemodynamics, etc. 

  • Forward vs backward failure
  • Acute vs chronic failure
  • RV/LV or Biventicular failure 
  • Systolic vs diastolic heart failure
  • High output vs low out failure
  • Ischemic vs non-ischemic failure 
  • Reversible vs Refractory HF 

None of them have really helped at the bedside though it helped us understand the condition. Now, in the last decade, we have crash-landed on our favorite obsession to classify HF ie based on Ejection fraction. We believe we have found an exciting new classification. (HFrEF/HFpEF/HFmrEF).We embraced it, even after recognizing EF as a battered LV functional parameter due to its high load-dependence with a dubious reproducibility.  

If we rely too much on echo, there can be a few more classifications for HF 

  1. HF failure with preserved diastolic function(25% of all DCMs with HFrEF )
  2. HF with preserved mitral valve function
  3. HF with preserved Global longitudinal strain(Still normal EF%)
  4. HF with preserved RV function
  5. HF with preserved Torsion and Twist.
  6. Finally, HF with normal Heart (Anemia/CKD etc)  In anemia heart never fails in true sense. In fact, it works at peak capacity.(More of a Success than failure). Similarly isn’t odd to put primary CKD/CRF in the CHF basket.

Probably the most important and practical classification  could be

  1. Primary vs secondary HF (Primary means all muscle diseases under MOGES system ) 
  2. Valvular vs non-valvular failure (Surgically correctable MVR/DVR/Mitral valve repair)
  3. Revascularisable  or Non-revascularisable HF (STICH study responders)
  4. ICD/CRT eligible HF vs Non-eligible HF ( Rule out DANISH study non-responders)
  5. Refractory failure -Novel drugs/ Assist device/TAH/ Transplant suited 

Final message

 Dr Thomas Lewis said over 100 years ago, the essence of the practice of cardiology is to recognize HF early. Looking back at the literature, there will be no dearth of classification for HF. It will come and go according to academic and Imaging whims. Of course, that may aid in ruling out primary cardiac conditions. But, we must always emphasize to the next-generation that HF is often due to systemic*(reversible too) conditions in substantial numbers. Here the heart is just a bystander watching helplessly, trying to adapt to a remote systemic comorbid problem. Such hearts don’t require cowboy aggression but gentle care by concerned physicians.(One study reveals weight reduction and systematic exercise program adds more life to HF than drugs and devices. Will link the reference/ or try google)

*Eg: Anemia is the commonest cause of HFpEF on a global scale. .CKD, undiagnosed autoimmune disorders, malignancy, are other classical examples. Let us be first a physician then a cardiologist, that will ensure our we don’t miss important treatable conditions with our short-sighted definition of heart failure based on EF%.

 Reference 

1.Y. Juilliere, J.N. Trochu, P. de Groote, et al.Heart failure with preserved systolic function: a diagnostic algorithm for a pragmatic definition  Arch Mal Coeur Vaiss, 99 (2006), pp. 279-286  View Record in ScopusGoogle Scholar
 

Read Full Post »

Assessment of LV diastolic function primarily depends on the Doppler flow profile across the mitral valve and also to be noted are the 2D features of LA and LV for associated abnormality like LVH, LAE etc.

Why diastolic dysfunction assessment difficult in AF ?

Since most diastolic doppler mitral inflow parameters involve analysis of atrial contraction A wave, atrial fibrillation makes it difficult to assess diastolic dysfunction. Since we have only early diastolic velocity to assess, the changes confined to this E velocity is of paramount importance. This E velocity again is subjected to cycle length dependent alteration in both its acceleration and deceleration time , making things still more complex.

However, the following features help diagnose diastolic dysfunction in AF

  1. Lack of significant  E velocity variation (<20%)  Inspite of significant RR interval change.(This implies mean LAP is kept high irrespective of cycle length suggesting elevated baseline LAP)
  2. E deceleration time (<140ms) (In long cycle)
  3. Propagation velocity in color M Mode(Vp)  <45cm/sec might help (RR interval dependent, measure in the long cycle)
  4. E/e” in a single beat by dual doppler probe (Ref 1)  > 10 indicate diastolic dysfunction that correlate with PCWP> 15mmhg (Ref 1)
  5. Finally (and curiously ) presence of AF by itself may imply significant LV diastolic dysfunction. It could be due to an increase in atrial strain and afterload of LA (ie pre A-LVEDP) (Of course, It should be in the absence of mitral valve disease)
  6. LA dimension in AF*

*LA dimension is a very good sign of chronic elevation of LAP and diastolic dysfunction in the absence of mitral valve disease. However, AF can dilate the LA making it a less useful parameter. But, it should be noted in AF both RA and LA dilate together.So,  a disproportionate LA>RA (or if RA is normal size ) could still be a marker of baseline LV diastolic dysfunction.

 

Reference

  1. Kusunose K.Yamada H.,  Nishio S.et al.  Clinical utility of single-beat E/e′ obtained by simultaneous recording of flow and tissue Doppler velocities in atrial fibrillation with preserved systolic functionJ Am Coll Cardiol Img 2009 2:11471156

 

Read Full Post »