Archive for May, 2009

Thrombolytic therapy ,  has been  the specific treatment  for STEMI for  many decades. Primary PCI*  is  shown to be  superior  than  thrombolysis  if   performed   early  by an experienced  team in a dedicated facility. (*Conditions apply). It is estimated ,   currently only a  a fraction  STEMI  population get primary PCI (<5%) in ideal conditions . Another fraction , get  primary PCI by inexperienced cardiologists  in low volume centres.

So , thrombolysis   remains, and  would continue to remain ,   the    primary  mode of therapy for STEMI  in the  present and near  future !

How do you assess the successful  thrombolysis ?

It should be recognised ,  there is a fundametal flaw in this  question !

The aim of thrombolytic therapy is  not  to   lyse  the thrombus  , but also  to restore the coronary blood flow to the  myocardium – also called reperfusion . One may wonder , why the term ,  thrombolysis  should ‘t be  used interchangeably with reperfusion. 

A successful thrombolysis  never guarantees  a good reperfusion , for the simple reason ,  distal blood flow in an  obstructed coronary artery  is dependent on ,  many factors  other than relief of obstruction.

Apart from the potency of drug,     other   important factors  that determine  successful  lysis &  reperfusion are  . . .

  • Timing of opening of artery , if the thrombolysis is delayed  ,  the distal myocardium is dead , and   it won’t allow blood flow to enter the mycardium.
  • Microvascular integrity is as vital as epicardial vessels.
  • Distal microvascualture  plugging by the thrombotic debri . This is called”no reflow “

So , we should  primarily assess myocardial reperfusion rather than epicardial thrombolyis ! following thrombolysis .

What are the parameters available to assess successful reperfusion /thrombolyis?

  1. Clinical : Relief from chest  pain. Angina relief  , though subjective is an indication for adequate reperfusion of ischemic myocardium.
  2. ECG-ST segment regression > 50%
  3. Cardiac enzymes: Early flushing of  intra myocytic CPK into systemic circulation and hence early peaking of CPK MB (<1ohours instead of 24h)
  4. Reperfusion arrhythmias(AIVR-Less specific) .Primary VF is now thought to be reperfusion related.
  5. Infract related artery(IRA) patency by coronary angiogram
  6. Distal TIMI flow/ myocardial blush score/ TIMI frame count

ECG ST regression ,  is a direct indicator  myocardial reperfusion   as the ST segment shifts  towards baseline ,  implies  of infarct current of injury . ST regression almost always correlate with good  recovery of LV function  in STEMI .

IRA patency , is an epicardial index , it  does not give information about myocardial blood flow . But ,  a good  distal TIMI flow generally indicates good reperfusion.This  again ,  is  not a fool proof  index,  as even many of the TIMI 3 flow patients  have severely damaged myocardium by echocardiography .

Final message

For the above reasons, one should always  make a distinction between successful lysis and successful reperfusion . Surprisingly ,  ECG  is  the gold standard for assessing successful reperfusion of myocardium ,  while CAG tell us  about epicardial patency and possibly reperfusion also.

Read Full Post »

Apart from  acute  coronary syndrome,    cardiac  failure is   the most common clinical  presentation of  CAD. Cardiac failure ,  classically present with dyspnea on rest or on exertion , while angina is the dominant presentation in ACS.  

What if  ,  both these  occur together in an acute fashion ?

Yesif it occurs  together it is called ischemic cardiac failure . Fortunately , this is quiet uncommon . It has   an adverse outcome,  especially if it occurs  as a companion of NSTEMI . Let us see how . . .(  Most of the episodes of cardiac failure  in CAD  means only  LV failure )

For cardiac failure to occur , there need to be a mechanical contractile dysfunction or defect . In CAD population , this can  occur in  one of the following way.

  • Loss of LV muscle (Acute  Myocardial infarction as in STEMI)
  • Mechanical defects (Mitral regurgitation/VSR etc)
  • An arrhythmia (Commonly VT or AF / CHB )  can precipitate  cardiac failure

Apart from these three , there is  an important mechanism of acute LVF, namely ischemic stunning of major part of LV resulting in severe mechanical dysfucntion.This is a dangerous form of cardiac failure (Pathologivcclaly it is thought to represent  contraction  band necrosis !) this occurs in global ischemic situations manifested as gross global ST depression.

So,  there are two types of  ischemic LVF  .  STEMI   occuring due to infarct( ± ischemia ) Other  one (NSTEMI)entirely due to ischemia.

Logically ,  one  may n’t   refer  STEMI related LVF as  ischemic LVF at all  , as infarct has already occured. While , NSTEMI related LV could be the ” True ischemic LVF “

What are the differences between cardiac failure that occur in  STEMI and NSTEMI ?

lvf in nstemi stemi

Is post infarct failure  ( The commonly used terminology  , now out of vogue ! )  a type of ischemic LVF ?

In the strict sense , it is not . Here the dead myocardium , is responsible  for the   failure .To label a  LVF , as  ischemic , ongoing ischemia must  be  documented and further it  should  be shown to  contribute   for the  mechanical dysfunction .

This is of vital importance ,   if you wrongly attribute ischemia  as a cause for  the LVF , the patient may be taken up for emergency  revascularisation .It is not going to help much (Infact , it may  worsen !) as  this cardiac failure is not going to be corrected  .What we require ,  here is an  aggressive medical management  protocol .

Read Full Post »

Failed thrombolysis is an important clinical  issue  in STEMI   as  successful thrombolysis  occurs  only in  about 50-60%  of pateints . The typical criteria to define failed thrombolysis is  the  regression  of less than 50% of sum total( or maximum)  ST elevation in infarct leads.

So what do you do for these patients with failed thrombolysis ?

It depends upon the patient’s symptom, hemodynamic stability, LV dysfunction .

They  should  get one of the following .

  1. Conservative medical management  with /without CAG
  2. Repeat thrombolysis
  3. Rescue PCI
  4. CABG

Medical management is  thought to be  too inferior a  management,  many of the interventional cardiologists  do  not want to talk about . But  , there is  an important  group of patients (Not often addressed in cardiology literature)  who  technically fulfill the criteria  of failed thrombolysis  , but   still  very  comfortable , asymtomatic  and in  class 1. These patients ,  have  a strong option for continuing the conservative management .

Repeat thrombolysis does not have a consistent effect but can  be  tried in some  stable patients. CABG  can be a genuine option in few

Rescue PCI

This terminology  has become  the  glamorous one since the  catchy word  rescue is tagged in the title  itself. For most of the cardiac physicians ,  this has become the default treatment modality.This is an unfortunate perception . What  one should realise   here is  , we are  tying to rescue  the myocardium and  the patient ,   not the patient’s coronary artery !

Opening up a coronary obstruction is not synonymous with rescue .

For rescue PCI ,  to be effective it should be done within the same time window as that for thrombolysis (ie within 6 or at the most  12 hours) .This timing  is  of vital importance  for the simple reason , there will be nothing to rescue after 12 hours as most of the muscle  would be  dead. Reperfusing a dead myocardium has been shown to be hazardous in some ,  as it converts a simple  infarct into a hemorrhagic  infarct.This softens the core of the infarct and  carry a risk of rupture. Further,   doing a complex emergency  PCI  ,  in  a thrombotic milieu with   presumed  long term  benefit ,  is  a  perfect recipe for a potential  disaster.

While the above statement may be seen as pessimistic view , the optimistic cardiologist would vouch for the“Curious  open artery hypothesis” .This theory simply states , whatever be the status  of the distal myocardium ( dead or alive !)   opening an obstruction in the concerened coronary artery  will benefit the patient !

It is  huge surprise , this concept   continues to  be alive even after  repeatedly shot dead by number of very good clinical trials (TOAT, CTO limb of COURAGE etc ).

The REACT study (2004) concluded undisputed benefit of rescue PCI for failed thrombolysis  , only if the rescue was done  within  5-10 hours after the onset of symptoms.The mean time for  pain-to-rescue PCI was 414 minutes (6.5hours)

Final  message

It is fashionable to talk about time window for thrombolyis but not for PCI  .The time window for rescue PCI is an redundant issue  for many  cardiologists ! . But ,  the fact of the matter is ,  it is not . . .

The concept of time window in rescue PCI  , is as important as ,   that of  thrombolysis. Please , think twice or thrice !  if some body suggest you to do a rescue PCI in a stable patient  ,  12hours after the index event .

Important note : This rule   does not (  or need  not  ) apply for patients in cardiogenic shock  or patient ‘s with ongoing iscemia and angina.

Read Full Post »

NSTEMI  constitutes a  very heterogeneous population .The cardiac   risk   can vary  between very low to very high .  In contrast ,  STEMI patients  carry  a high risk for  electro mechanical complication including   sudden death .They all need immediate treatment  either with  thrombolysis or PCI to open up the blood vessel  and salvage the myocardium.

The above concept , may  be true in   many situations  ,  but what we fail to recognize   is  that ,   STEMI   also  is  a heterogeneous clinico pathological  with varying risks and outcome !

Let us see briefly ,  why this  is very important  in the management of STEMI

Management of STEMI  has undergone great  change  over the past 50 years and  it is the standing example of evidence based coronary care in the modern era ! The mortality  ,  in the early era was around 30-40% . The advent of coronary care units, defibrillators, reduced the mortality to around 10-15%  in 1960 /70s . Early use of heparin , aspirin   further improved the outcome .The inhospital mortality  was greatly  reduced to a level of  7-8% in the thrombolytic  era. And ,  then  came the interventional approach, namely primary PCI ,  which is now considered the best form of reperfusion when done early by an experienced team.

Inspite of this wealth of evidence   for the   superiority  of PCI  , it is only a fraction of  STEMI patients get  primary PCI   even in some  of the  well equipped centers ( Could be as low as  15 %)

Why ? this paradox

Primary PCI   has   struggled  to establish itself  as a global  therapeutic concept  for STEMI ,   even after   20 years of it’s introduction (PAMI trial)  .  If we  attribute ,  lack of   infrastructure  , expertise are  responsible for this low utility of primary PCI , we are mistaken ! There are so many institutions , at least in developing world ,   reluctant to do primary PCI  for varied reasons.( Affordability , support system , odd hours ,and finally perceived fear of untoward complication !)

Primary PCI may be a great treatment modality , but it comes with a inherent risk related to the procedure.

In fact the early hazard could exceed the potential benefit in many of the low risk STEMI  patients !

All STEMI’s are not  same , so all does not require same treatment !

Common sense and logic would   tell us any medical condition should be risk stratified before applying the management protocol. This will enable  us to avoid applying “high risk  – high benefit”  treatments in low risk patients . It is a great surprise,  the cardiology community has extensively researched to risk stratify NSTEMI/UA   ,  it has  rarely  considered risk stratification of STEMI before  starting the treatment.

In this context , it should  be emphasized  most of the clinical trails on   primary PCI  do not address  the clinical  relevance and the  differential outcomes   in various  subsets of  STEMI .

Consider the following two cases.

Two young men with STEMI  , both present within  3  hours   after  onset of symptoms

  1. ST elevation in V1 -V6 , 1 , AVL   ,  Low blood pressure , with severe  chest pain.
  2. ST elevation in 2 ,3, AVF , hemodynamically stable , with minimal  or no  discomfort .

In the above example,   a  small inferior  MI by a distal RCA occlusion  ,  and a proximal LAD lesion jeopardising entire anterior wall , both  are  categorized as STEMI !

Do you want to advocate same treatment  for both ?  or Will you  risk stratify the STEMI and treat individually ?  (As we do in NSTEMI !)

Current guidelines , would  suggest PCI for both situations. But , logistic ,  and real world experience would clearly favor thrombolysis for the second patient .

Does that mean,  the second patient is getting an inferior modality of treatment ?

Not at all . In fact there is a strong case for PCI being inferior in these patients as the risk of the procedure may far outweigh the benefit especially if it is done on a  random basis  by  not so well experienced cath lab team.

(Note : Streptokinase  or TPA does not  vary it’s action ,  whether given by  an ambulance drive or a staff nurse or even a  cardiologist !  .In contrast ,  the infrastructure and expertise have the  greatest impact on the success and failure  of PCI )

Final message

So , it is argued the world cardiology societies(ACC/ESC etc)  need to risk stratify STEMI (Like we do in NSTEMI ) into low risk, intermediate risk and high risk categories and advice primary PCI only for high risk patients.

Read Full Post »

Atrial septal defect is one among the commonest congenital heart disease .After years of controversy, there is consensus  now , all significant ASDs  need to be closed ,  at whatever age it is detected.

This rule does not apply to small ASDs without chamber  right atrial and right ventricular dilatation. These defects and PFOs need not be closed .

Over the years , the  controversy  has shifted  from   Should we close ?  to  How to close ?

There are two options available : Device closure , Surgical closure

asd closure device www.drsvenkatesan.com

asd closure www.drsvenkatesan.com

The following table compares the both treatment  modalities

( Personal perspective )

asd device closure 4

Final message

Device closure is a complex, costly, often  difficult  and  error prone   cardiac procedure .It needs long term follow up and may  carry a life long risk of major cardiac complication.It is useful only in selected subset of ASD patients. Surgical closure prevails over device closure in most situations.

Is this article  has biased view against this  emerging pediatric  interventional procedure of ASD closure ?

It may appear so . But that is the reality as on 2009 !.May we hope technology evolves further and take our surgeons head on .

2012 update on ASD device closure .

The   hard-ware  as well as the  expertise has   improved a lot and it is on right track to become a real challenge to surgery.

The only issue again is the availability of  rims to mount the device . Another  realistic and sensitive issue  which  have I come across is  , many interventionist cardiologist do feel awkward  when they experience  unexpected rim shortage on table.  They should realise it is not their  fault.

Always be ready to abandon the procedure and refer to the surgeon , according to your  true conscience 

After all , improperly delivered device is  a life long pain for the patient .He has come to you with a  great belief  isn’t !

2014 update

Device closure for most ASDs in both children and adult is  now possible with high degree of success. We have crossed about 50 patient experience. And  I am truly amazed  , how within a short period the device closure is about to conquer the crown from the surgeons ! (Exciting new data are coming from   my colleague Dr Gnanavelu from  the new Super specialty hospital of Government of Tamil Nadu Chennai. )



Aortic erosion following ASD closure


Read Full Post »

Acute coronary syndrome is the commonest cardiac emergency. STEMI and NSTEMI are the two clinical limbs of ACS. Generally they have distinct clinical, ECG, angiographic features.(Ofcourse,  with some degree of overlap) . It is  a  mystery , both clinical presentations differ so much inspite of the common denominator  , namely ,  an injured plaque with add on thrombus  within the coronary artery.

The mystery is since  decoded , the primary difference between these two entities is STEMI the occlusion occurs sudden and complete and in NSTEMI it occurs slow and incomplete

In STEMI ,  most of the clinical features and , need for emergent treatment , response to thrombolysis /PCI are dictated by the time dependent risk to myocardial loss .

Cardiac arrhythmias in ACS

It is a  much published  factoid   for  many decades  only one third of STEMI patients  reach the hospital alive ! The reason being , STEMI  is very much prone for primary VF.

Contrary  to this ,  almost all patients with NSTEMI reach the hospital alive ! How ?

Both are ACS, if ischemia is a powerful trigger for dangerous ventricular  arrhythmia’s ,  NSTEMI should also behave  similarly .

So what protects against arrhythmias in NSTEMI ?

  • We realise ,  by observational experience (Not EBM !)  It is the suddenness and totality of ischemia that trigger dangerous form of arrhythmia  .
  • Further, a balanced  ischemia in two contralateral segments (or global  ischemia) some how protects against development of ventricular  fibrillation .This may be due to preservation  of  electrical homogeneity  , and the spherical VT spiral waves are not sustainable.
  • In contrast , STEMI has a sudden  focal , ischemic  zone that initiates the VT and    ischemia free  contralateral segment  welcoming  and sustaining the  reentrant wavelet.
  • The observation of primarily single vessel disese in STEMI and multivessel disease in NSTEMI also give credence to this concept.
  • Further , ischemic preconditioning can exert an important anti arrhythmic  effect in NSTEMI as  patients with unstable angina have   slow, repetitive episodes of ischemia prior to the index event .
  • Post MI scar mediated VT/VF is independent of degree of overall ischemia
  • It is also established ,  a sub group of  STEMI pateints  who  had  preinfarction angina(  ie . a brief  period of UA/NSTEMI) have very low risk of SCD  supporting the concept of sensitising the myocardium against ventricular arrhythmias.

Final message

Even though , there is a convincing concept  of   ischemia induced  cardiac arrhythmia in literature , in real patients it is very difficult to link the two.

UA/NSTEMI is the most common  acute ischemic event but the incidence of VT/VF here,  is far less than one would expect.

In ACS , focal , total  ischemia is more likely to precipitate a VT/VF than multifocal and global ischemia.

Read Full Post »

Can we advice CABG for single vessel disease  ?

Yes, CABG  may be indicated  in

  • Critical , proximal , complex  LAD disease   with or without  ostium involvement.
  • Many of the bifurcation lesions with large and significant  side branch
  • Small caliber LAD with diffuse disease .

When these occur  in diabetic  subjects , the  indication for CABG is more certain .

* Present generation cardiologists  would feel  every  lesion  is  stentable and should not be referred to the surgeon .But it should be emphasized here,   technical feasibility alone  ,  does not  imply  PCI is superior and ideal in all coronary interventions.

Can we do a CABG  in  single vessel disease  with  normal  LAD ?

CABG is  very rarely  indicated   for isolated RCA or LCX disease. It should be consciously avoided in this patient population.

This is because the at risk myocardium  supplied by these vessels are far less than that of LAD. PCI  is  preferred    in these vessels .(Ofcourse , after considering medical management  ) .

CABG is  ,  too traumatic a  surgery , to  offer  in this  low  risk  coronary  lesions.


CABG  can still be done in following situations  for non LAD single vessel disease.

  • Left dominant circulation  with  complex lesions in LCX /OMs.
  • It is common to see diffuse , long segment  and severe disease of RCA with normal LAD /LCX system .PCI is not feasible in this subset.
  • Failed PCI
  • Recurrent instent restenosis.
  • Bail out CABG after a acute complication during PCI

One should remember ,  inability to do a PCI  does not  mean ,  the patient  should   land in surgeon’s table .We should recall , from our memory medical management is an effective and established form of treatment in single vessel disease ( Mainly for non LAD , and some cases of LAD also !)

Read Full Post »

Older Posts »