Feeds:
Posts
Comments

Archive for the ‘Cardiology-Echocardiography’ Category

Check out these two posters* for are a quick reference on HOCM with current updated evidence. The first one details about  Echo evaluation. The second one illustrates the genetic screening flow chart of the HOCM families.

Some of the queries, you will find the answers from these posters are,

1. How to recognize Intrinsic mitral valve defect by MR jet morphology?

2. How to cross-check the true LVOT gradient from MR jet?

3. When to do a provocative test to document the LVOT gradient?

4. What are the standard pre-myectomy measurements by Echo?

5. How to screen a family member of HCM?  Pros and cons of  Phenotypic vs Genotyping screening 

*Reference 

 
The poster is created by: Karan Kapoor, MD; Allison G Hays, MD, FASE. Design and illustration by medmovie.com.

 

Read Full Post »

Doppler E/A ratio reversal is probably the most reported abnormality in clinical echocardiography. We are also pleased to label it as a grade 1 diastolic dysfunction. Making a significant population who come for regular health checks anxious and worried.

Sharing a presentation from the Annual conference ECHO INDIA 2019, I participated in a symposium on Diastolic dysfunction.

Topic : Issues in diagnosing grade 1 diastolic dysfunction: Pearls and Perils

How did we get into this academic trap? Should we continue this practice?

The current ASE guidelines 2016 have a clear message. It has taken off the E/A ratio from the Initial screening for diastolic dysfunction.

Summary & Final message 

Are we ready for the change? By understanding a simple concept, one can reduce the incidence of indiscriminate diagnosis of grade 1 diastolic dysfunction.

  • E/A ratio apparently has a no role in diagnosing diastolic dysfunction in the normal population who have normal EF %.
  • Hence, never report E/A ratio in Isolation as grade 1 diastolic dysfunction.
  • However, in patients with HFrEF it does help in triaging diastolic dysfunction.
  • Always look for symptoms and 2D features  (Unexplained dyspnea, LA enlargement, LVH ) before considering diastolic dysfunction.

*For advanced readers and researchers grade 1 diastolic dysfunction does have a deep meaning and always continues to puzzle.

Patient corner

For all those anxious patients who ramble around with a report of grade 1 diastolic dysfunction, I can assure you this. Please realize, 9/10 times, this is just a decorative echocardiography abnormality meant to add some spice to the report  does not have any significance.

*Will post a PPT presentation shortly.

Read Full Post »

Bernoulli principle states that , when a high pressure jet (Air, Water, blood etc ) moves over a conduit, the pressure exerted by the jet on its sides (Lateral wall) reduces . The velocity gain is equal to pressure drop .This is why we take velocity as a rough guide to pressure gradient and the sacred formula in doppler echocardiography 4V2 came in to vogue . (Incidentally, Bernoulli principle shares the same principle when aircrafts lifts from runway at its peak speed as the pressure above the wings drops to zero or negative and the plane lifts up.)

Please note , the pressure should drop both above and below the aircraft by Bernoulli principle .But, the engine and wings are arranged in such a way , the air speed below the aircraft is slower and hence the pressure is high below and low above and the lift occurs promptly at take of velocity. Imagine , how the valve leaflets in heart is subjected to lift and drag forces every time the blood gushes with high velocity flows.This is also the reason for the Pulsus bisferiens, SAM in HOCM, Coanda effect in supra valvular stenosis, and any post stenotic dilatation.

In Echocardiography the Bernoulli equation is modified.

In clinical doppler echocardiography, we have liberally simplified the original Bernoulli equation by ignoring the the proximal sub valvular velocity V1 . Further , two more components in the equation is also amputated for our convenience ! (Flow acceleration and the viscous friction) .This is the reason we tend to err many times especially in outflow tract gradients and prosthetic valve gradients .

Pressure recovery phenomenon.

This is another hemodynamic lacunae in clinical echocardiography. We know, thepeak velocity of blood is attained just distal to site of obstruction. As the distal velocity beyond the obstruction begins to fall, the pressure tends to recover corresponding to the loss of velocity. This happens to certain distance beyond the obstruction. Since continuous wave doppler measures the pressure in its entire axis of alignment , it is likely to pick more pressure samples from the recovered areas and net result is, it measures more than the true difference in gradient across the valve.The phenomenon is most relevant in assessment of Aortic stenosis and results in over estimation of severity of stenosis.

Importance of Aortic root dimension

Pressure recovery is more likely to occur with small Aortic root. A stiff  so be careful when interpreting echo gradients in small aorta. Relationship between size of aorta and pressure recovery is complex .(Niederberger of pressure recovery for the assessment of aortic stenosis by Doppler ultrasound. Role of aortic size, aortic valve area and direction of the stenotic jet in vitro. Circulation 1996; 94:1934–40)

How much can be the overestimation ?

It can be up to 30 % or even more.Especially in prosthetic Aortic valves.

How to recognise it and overcome it ?

  1. First of all, recognise such a hemodynamic phenomenon exists and the sacred 4v square can be a myth !
  2. Never go with gradient alone in diagnosing valve stenosis. Look for 2D features also.This is more vital when you suspect acute valve obstruction.
  3. Always add the proximal sub valvular velocity (V1 ) in your Bernoulli equation .It need to be subtracted.
  4. The effect of heart rate on pressure recovery has not been properly studied.(The impact of which could be vital and hence too many false prosthetic emergencies could be avoided, as cardiologists tend to rely mostly on gradient than anatomical diagnosis of valve obstruction like visualising thrombus or struck leaflet by TEE or fluro.

Does this phenomenon happen with cath gradient ?(Generally it’s more pronounced in doppler echo )

Yes, It does happen in cath lab also , as its related to physics of flow. It can be minimised if we can use two simultaneous catheters ,one in LV and the other Aortic catheter placed very close to the leaflets.

pressure recovery in aortic stenosis animation

Click below for an Animated version

pressure recovery phenomenon in aortic stenosis 005

Note the pressure recovers from P 2 to P3

Reference

Pressure recovery phenomenon in doppler echocardiography

pressure recovery phenomenon doppler echocardiography

Read Full Post »

 

A 50-year-old man was referred for dizziness, bradycardia and dysphagia .He was very clear in describing his symptoms and  landed up in Gastro- enterology  OPD , from there was referred to my clinic for cardiac work up . His ECG showed a sinus bradycardia HR of 48 /mt.

Screenshot_2017-07-05-19-09-12

Echocardiogram revealed a structurally normal heart as we expected , but was surprised to spot suspicious shadow in para-sternal long axis view , beneath left atrium.

A well demarcated large mass compressing left atrium.  Trans Thoracic Echocardiography  may not be looking at the heart alone ,(Its technically Thoracic Ultrasound though we may refer it as Echocardiogram   )

  • Aortic aneurysm ?
  • Mediastinal teratoma?
  • Bronchial adenoma ?
  • Esophageal mass ?

The Answer is none of the above

As I was wondering what it was, the staff nurse in charge threw a heavy folder with well worked up gastro Investigations.

That moment , diagnosis became obvious , without a need for further scrutiny to my medical acumen.

Note: The barium swallow of the Esophagus reveals the Intimate relationship between the food tube and the heart as it descends vertically downwards posteriorly  . Realise , how the proximity of these two structures could  confuse a physician when symptoms spill over on either way. (I would have expected a lateral view to show the compressive effect of Esophagus on the left atrium the radiologists felt its not important !)

Yes , it is Achalasia of the cardia , dilating the lower end of esophagus with fluid /mass effect  , compressing the posterior surface of Left atrium.He underwent a myomectomy surgery.

Why bradycardia  ?

There is well described esophago-vagal reflex reproducible by stressful swallow or balloon inflation in the lower end of esophagus at D7 level.(Ki Hoon Kang,Korean J Intern Med. 2005 Mar; 20(1): 68–71.)

Achalasia cardia is known to be associated with symptomatic bradycardia, dizziness, and rarely swallow syncope,though this patient didn’t have a classical syncope.The bradycardia is probably due to high vagotonia, (Hugging effect on posterior surface of heart known for rich innervation of vagus.) . Complete reversal  of bradycardia after esophago -gastric surgery is expected.

Implication for cardiologists

There has been instances of patients with esophageal syncope and reflex bradycardia getting permanent pacemaker therapy. I think , clinical or sub clinical esophageal disorders should be included in the work bradycardia before labelling them as intrinsic sinus node dysfunction .(Ref 1,4)

Final message 

The field of Cardiology  is often referred to as a super specialty atleast in India . I disagree with it strongly. Cardiologists are neither super(eme) nor special .We need to be reminded  its afterall a sub-specialty of Internal medicine and each specialist should undergo retro-training in medicine periodically .This patient is a typical example of a gastric problem entering the domain of cardiac Imaging.Strong foundations in symptom analysis and some degree of medical  curiosity will enable an occasional cardiologist to make a correct diagnosis belonging to a remote foreign specialty.

Reference 

1. Palmer ED. The abnormal upper gastrointestinal vagovagal reflexes that affect the heart. Am J Gastroenterol. 1976;66:513–522. [PubMed]

2.Armstrong PW, McMillan DG, Simon JB. Swallow syncope. Can Med Assoc J. 1985;132:1281–1284. [PMC free article] [PubMed]

3.Turan I, Ersoz GBor S..Swallow-induced syncope in a patient with achalasia
4.Dysphagia. 2005 Summer;20(3):238-40  4.Basker MR, Cooper DK. Oesophageal syncope. Ann R Coll Surg Engl. 2000;82:249–253.

Read Full Post »