Posts Tagged ‘sa block’

Conduction disturbance is a fairly common occurrence following  MI. Inferior STEMI is especially prone for AV blocks. This is because  the  blood supply to AV nodal  tissues and the inferoposterior surface of the heart  share the same arterial territory . AV node gets it supply  90% of time by right coronary artery(RCA )  and 10% by  LCX. Very rarely from both .

The common bradyarrhytmias that we encounter in inferior MI are

Sinus bradycardia

Sinus pauses ,SA blocks

AV blocks






ECG types

1  degree AV block

2 degree  AV block – Type 1 Wenke bach

Complete heart blcok


The inferior aspect of the heart has rich innervation of vagal nerve terminals (While the  sympathetic adrenergic system is concentrated in the anterior surface) . The moment infero posterior MI occur it stimualtes the vagus and a prompt bradycardic response occur .Many times the classical hypotension /bradycardia reaction is simply a reflection of heightened vagal tone.

Consequence of vagal tone on SA nodal and AV nodal conduction

As expected, vagal stimulation can result in a spectrum of arrhythmias from the  simple bradycardia to complete SA block  to  AV block. Extreme bradycardia , may release the junctional pace maker and result in junctional rhythm with a rate of around 40-50. There can be a functional AV dissociation between SA node and AV node. Careful ECG analysis is required here ,  as it can mimic organic AV block.The simple way to differentiate between organic AV block from simple AV dissociation is to look at the p waves.In AV dissociation both atrial rate and ventricular rate are nearly equal or VR  is slightly more than AR .In CHB atrial rate  exceeds ventricular  rate.

SA and AV block occur due to various mechanisms in inferior  MI

  • High vagal tone
  • Ischemia of SA/AV node
  • Necrosis of AV node
  • Drug effects -Like morphine
  • Reperfusion bradycardia*

Ischemic AV nodal arrhythmias are  some times very difficult to differentiate from vagotonia especially if occur within 24h.

Irreversible AV nodal block due to necrosis is rare.But if occur , usually  associated with extensive inferior mI/RVMI/ .AV block  that  persist beyond 48-72hours should raise the suspicion of damage to AV node.( As vagal tone is very unlikely;y to last beyond 48h)

* Some time a an episode of sudden severe  bradycardia  can be manifestation of RCA reperfusion.Flushing of SA nodal or AV nodal branch of RCA might trigger this. This has a potential  to  bring the heart to asystole.The resultant extreme bradycardia often triggers VT/VF .The reported high incidence of primary VF in infero posterior MI is attributed to this sudden RCA perfusion.

Medical management for CHB

Brady arrhythmia’s due to high vagal tone are generally benign .No specific intervention is required.Atropine will be suffice in most situations.Some times isoprenaline may be required. Aminophyline , now Ivabradine may have a role. Atropine not only corrects the HR it raises the BP also as  it counters  both cardioinhibitory and  vasodepressive  limbs of vagal stimulus mediated by  acetyl choline .

Pacing for Bradycardias in inferior MI.

  • Generally not necessary for sinus bradycardia.
  • Few with CHB require it
  • Persistent hypotension and RVMI  needs it often.(Dual chamber temporary pacing preferred as AV synchrony is vital here.)

Weaning of temporary pacing in inferior MI.

This could be a tricky issue. It can be weaned off in less than a week.A practical way is to use temporary pacing  only in back up mode at a heart rate of few beats less than the patients rhythm.Pacing for long hours  at high rates may delay the resumption of patients own rhythm and may result in false diagnosis of irreversible CHB and a subsequent PPM

How many will require permanent pacing following infero posterior MI ?

Only a fraction of patients with CHB require long term pacing . There are some centres tend to overuse PPM in this situation. Wait and watch policy may be the best.A unnecessary lead  within a  infarcted ventricle  has a potential to create problems .There have been  occasions a stable RV MI has been destabilised due to RV pacing lead triggered recurrent VF.

Tachycardias in inferior MI

It is relatively uncommon.Atrial involvement is more common with infero posterior MI and hence a greater incidence of atrial fibrillation .

RV MI can induce ventricular tachycardia arising  from the RV myocardium

Read Full Post »



Sinus node  as the pacemaker , orchestrates the rhythm of life . It has  to fire for the entire life time of  a person.It  can not afford to take any rest ! But it can pause a little bit , of course that pause  could  be less  than 15% of it’s basic sinus length. This variation of sinus  cycle length is called sinus arrhythmia.This is physiological. When it exceeds 15 % of the previous sinus cycle it is referred to as sinus pause.

 Have a look at this ECG



What follows a long pause ?

By strict terms  of definition a sinus   pause should be followed by  a delayed , next sinus  beat only. A  sinus pause  , many times  is followed  by   JPD – Junctional escape beat.This situation should be ideally  referred to sinus arrest as the sinus node is taking too much of rest and it is not able to wake up from the slumber and it needs assistance form the junctional pace maker.

So even though sinus pause and sinus arrest is used many times interchangeably, it should be avoided. 

What are the electrophysiological mechanisms of sinus pause ?

  • Simple sinus bradycardia . The commonest  mechanism is  the  increased vagal tone. This occurs more often in young athletes. Eventhough increased vagal tone  conveys   a innocuous meaning , at times  this can also be symptomatic  and require intervention.
  • Sinus node exit block.
  • First degree, second degree, complete SA block can occur as in AV node.

First degree SA block can not be diagnosed by surface ECG. Third degree SA block is same as sinus arrest and subsidiary pacemaker will function in these patients.  Second degree SA block is usually diagnosed when the sinus pause is in the multiples of resting sinus cycles. If the pauses are not in exact multiples  sinus arrest is diagnosed. All these arrhythmia’s are collectively called sinus node dysfunction(SND)

How do you manage these patients?

Sinus node disorders can occur in number of systemic diseases*. It  needs to be  ruled out.

  • Infiltrating diseases like amyloidosis, hypothyroid states can result in SND.
  • Drug induced SND like beta blocker and calcium blockers are fairly common and should be excluded
  • Some congenital heart disease (SVC ASD) can involve sinus node.
  • Ischemic SA node disease is rare but can occur  following  infero posterior  myocardial infarction
  • Sinus node disorders are  very often related to degenerative atrial diseases associated with HT, cardiomyopathy etc

*The list is not exhaustive

A very important association is noted  with atrial fibrillation as  a part of tachy brady syndrome .The link between SND and AF  is obvious as   atrial pathology is the common denominator in both ! This will be discussed later.

When is a  pause  significant ?

Any pause that is producing significant symptoms is significant.This depends upon the overall  hemodynamic compensation of the patient.Young, and fit can even tolerate three second pause without symptoms.Underlying heart disease makes even a smaller pause symptomatic.But generally a 3  second or more  pause is almost always pathological .Pauses can be up to  5  seconds (  a 5 second pause actually means a  heart rate of 12/mt , obviously it can not go on for a minute, a patient will develop a syncope). A 3 second pause  corresponds to 20/minute.

How will you evaluate a patient with sinus pause ?

There are sophisticated electrophysiological studies (EP) available like sinus node ECG ,sinus node function studies like sinus node recovery time, activation time etc. But these are generally of  academic interest.

If a patient is symptomatic  (syncope) because of bradycardia  he requires a pacemaker and  EP study is redundant . Similarly , if  he is totally asymptomatic in spite of pauses , again  EP study is  not  indicated.

Only for patients  in the  grey zone,   further studies are indicated .This would include a extended holter, loop recorders, event monitors etc.

Another important issue to consider  is , before putting a pacemaker   patient”s   symptom  must be correlated  with their arrhythmia.

What is  the overlap  between sinus node dysfunction and neuro cardiogenic syncope ?

SND  can occur as an overlapping syndrome with neurocardiogenic syncope.(NCS ).NCS is also a very common cause of syncope .In NCS  there are two limbs .Cardio inhibitory and vasodepressive. The cardio inhibitory form can exactly mimic an SND. In a given patient  it is very difficult to pinpoint which of this limb is dominant.Head up tilt test(HUT)  might help in few.  If a patent’s symptoms are due to inappropriate vasodilatation pace maker may not reduce the symptom of dizziness or syncope.


  • There is no ideal  medical therapy* available as on date
  • Withholding all drugs which might aggravate bradycardia is of paramount importance.
  • Pace maker is the specific treatment in all symptomatic patients.

*Aminophyline tablet may be useful in some patients .It acts by antagonising adnosine receptors in SA node.Other drugs which can incrase the heart rate in the short term include  Orcipranaline(Beta 2 stimulant /Alupent ) Probantheline(M 1 blocker)

The key issue is to avoid unnecessary pacemaker implants in patients who have insignificant pause.

 Which pacemaker is ideal in SND ?


                                                              The need for dual or single chamber pacemker will be taken by the electrophysiologist .Atrial based pacemaker (AAI)  is preferred as it gives physiological pacing .But a simple ventricle based VVI pace maker is good enough in vast majority of patients. This takes care of   future risk of AV block also. DDD pace maker is the most physiological pacemaker and it is supposed to provide better quality of life. But it has an issue of insertion and  maintenance of  two leads, multi parameters to be programmed.It should switch to appropriate modes  at different times.(Like VVI mode during atrial fibrillation etc).Trouble shooting needs expertise , while  VVI is simple,  safe , and just effective as well .(In this turbulent world, quality of life is a  too trivial an issue  to be determined by a DDD  maker)

Read Full Post »