Posts Tagged ‘pulse deficit’

Atrial fibrillation has a direct effect on systemic blood pressure as stroke volume swings from beat to beat because of changing  RR Interval ( preload ). The variation in systolic pressure actually reflects not only the changing stroke volume but also the enhanced contractility of the ventricle to the preload( Frank-Starling principle ). The net effect is reflected in the pulse as an irregularly irregular pulse (Both rate and volume /Amplitude).* However, In dysfunctional ventricles or in acute AF* this variation in systolic  BP can be significant. Also realize, If the preload is changing every beat, there is a considerable dynamism in the afterload as well because of ventricular arterial coupling.

(*Acute effects on BP with the onset of AF : There can be transient hypotension with loss of atrial booster pump.This is not significant in otherwise healthy hearts. Inpatient with baseline LV or RV dysfunction, the onset of AF can be detrimental. The ventricular rate is also a determinant of blood pressure. At fast rates, there can be a fall in BP)

How to record BP during AF ? 

As you record the BP by cuff, the Phase 1 Korotkoff sound floats up and down with each beat. If the variation in RR interval is huge one may get a beat-to-beat variation even up to 40 mmHg.We also know, AF can cause pulse drop /deficit intermittently.

What happens to Korotkoff sound during pulse deficit?

Obviously, there will be a loss of these phase 1 sounds, though the other phases of sound may be heard, which are generated by the previous cardiac cycle. So, measuring blood pressure in AF is not a clinically pleasant task. That’s why we are asked to record 3 times and take an average.

Now, coming to diastolic BP in AF. It’s a real hemodynamic riddle. Traditional teaching is, systolic BP is determined by cardiac output and diastolic BP by peripheral vascular resistance. This is at best a gross understanding of circulatory physiology. Both systole and diastole are coupled together as blood flow across the system of varying resistance. In fact. The preceding systolic pressure head stores the elastic energy in large vessels that are thrown back as diastolic BP.

So what happens to BP during AF? What does the literature say? It doesn’t say much. So we decided to look for ourselves. Here is a tracing of femoral arterial pressure curves during atrial fibrillation. Note: the systolic BP shows considerable variations with changing RR interval with little change in diastolic blood pressure.


Final message

In Atrial fibrillation, the systolic blood pressure changes from beat to beat and it impacts the timing of the Korotkoff sounds. The diastolic blood pressure behaves the same, but it’s less in magnitude and difficult to detect by conventional sphygmo-manometry.

Further reading 

Clinical Implication for irregular BP of Atrial fibrillation  :https://drsvenkatesan.com/2021/05/04/cerebral-hemodynamics-in-af-irregularly-irregular-brain-perfusion-and-risk-of-dementia-cordis/

The effect of AF on pulmonary arterial pressure is an unexplored topic .Cardiology fellows please note.

Read Full Post »

VPDs are the most common arrhythmia  that  confront  us  in  cardiology clinics .While  it can be a totally  benign   manifestation in some  ,  it may signify a sinister condition in others. ECG  is the easiest  and surest way to identify VPD.However  a shrewd echocardiographer can detect the VPDs while imaging the heart.It is often missed if one do not concentrate on the mitral valve motion.

Note :The VPD convert the typical M pattern into a inverted U pattern in mitral valve.

One of the important hemodynamic side-effect of VPD is intermittent mitral regurgitation.

Effect of VPD on mitral valve opening .

By  conventional thinking   VPDs  are expected   to impact  more on the  mitral  valve closure than it’s  opening .In reality it has indirect influence on mitral valve  opening as well. The retrograde  conduction(VA conduction) of the VPD determine the timing of atrial contraction and hence the   mitral valve opening. If the VPD gets blocked retrogradely  within AV node , the normal sinus impulse will activate the atria in an antegrade fashion .Note ,  he atrial activity  occur randomly when multiple VPDs occur.This makes the cardiac cycle too complex to assess especially the diastole. (In fact true  physiological diastole  may  not occur here !)

If  the mitral valve opening  is interfered by a   VPD  (Early diastole is  the  favorite time  for VPDs to  appear  !  )   .When it occurs the AML is    suddenly pushed  upon superiorly  by the premature ventricular activity and hence resets the  mechanical diastole. Please note electrical resetting of atrium is different from mechanical resetting.

It is also possible atria and ventricle contract simultaneously .This is the time , a cannon wave  may occur inside LA .VPDs can result in pulmonary venous canons and may even elevate pulmonary venous pressure   if  this  occurs repetitively .

Another possibility  is ,  VPDs  may not initiate a ventricular  contraction at all .It may be  simply  be an electrical event. That’s why  we changed the name of extra systole  and premature contraction into just   premature depolarisations.

Why is it important to know about M Mode motion of VPDs

Cardiologists  continue to  engage wide qrs  tachycardias   in the  wrong side  of their   brain for many  decades .The ECG debate about wide qrs tachycardia  is expected to  continue  for generations . !  Few smart cardiologists would  rapidly put  the echo probe  over the mitral valve and able to  differentiate  instantly a VT form SVT   with fair  degree of accuracy.

Detection  of regular M shaped mitral AML  will exclude a VT with a high degree of precision .(AV dissociation by echo )*

Even  presence of trivial  MR*  (More often diastolic )   which occur  irregularly  will  definitely indicate it is VT . SVT  hemodynamically   can not result in this  MR is gives us evidence for AV dissociation

* No reference for these observed indices in our lab. (Class 1 Level C expert opinion(  No one calls me as expert though ! )

What is the mechanism  of VPD induced  mitral regurgitation ?

It is well-known VPDs can cause   mitral regurgitation .Not every VPD cause MR.

  • The timing is important .
  • It can be  either systolic or diastolic MR .
  • If VPD occur in early diastole (After the T wave , the MR jet  will collide with  diastolic mitral flow. )
  • Paradoxical septal motion induced by VPDs can alter the pap muscle alignment transiently and result in MR
  • We dot not know how a LV apical VPD  differ from RVOT  VPD in the genesis of MR.
  • Logic would suggest RVOT  VPDs are unlikely to result in MR as there is  a time lag for the impulse to reach the LV base

What is  the effect of  VPD and Aortic valve opening ?

While  every VPD promptly  hits the mitral valve ,  aortic valve may or may not open with VPDs .Again timing and focus of VPD could be  important.This is the reason during  multiple  VPDs  only few open the aortic valve , that  explains  pulse deficit. (The so called missed beat )

Final message

Anterior mitral leaflet (AML) is the most mobile structure  of  the heart . Hence ,  it is not surprising to note  sudden unexpected ventricular contraction will  have maximum impact on this valve .

When VPDs occur in clusters or at random it has a complex effect on the mitral valve motion. This is responsible for  palpitation , minimal mitral regurgitation and rarely trouble some pulmonary venous cannons and raise in pulmonary venous pressure .

Careful analysis of  AML motion can give us useful clues to differentiate VT from SVT during wide  qrs tachycardia

Read Full Post »

Pulse deficit is a clinical sign wherein , one is able to find a difference in count between heart beat (Apical beat or Heart sounds ) and  peripheral pulse .This occurs even as the heart is  contracting , the pulse is not reaching the periphery.This can occur in few clinical situations .

1 . Atrial fibrillation.

2. Very early diastolic  ventricular  ectopic beats

3. Some patients with Pacemaker.

The mechanism is  , the ventricular contractions are  too weak and unable to open the aortic valve  (Or opens feebly*)  , but at the same time they are good enough to close the mitral valve. To open the aortic valve it has to generate atleast 60-80 mmhg pressure , while mitral valve closes even  as LV generates  8-14mmhg  .(LV/LA pressure cross over). So intermitently the  second heart sound  is missed while S1 is retained,  producing more heart sounds and less pulse count in the periphery. The S1 is either felt or heard at the apex but the corresponding pulse is missing . Further , this intermittent absence of  S2  results in totally irregular S1 /S 2 relation.



Why some of the contractions of LV is too weak to open the aortic valve ?

Because the RR interval varies , the ventricular filling also varies , diastole duration is constantly changing some of the diastole are too short  and LV hardly gets filled , as the LV force of contraction is directly decided by the LVEDV and LV  fibre length these contractions are too weak.

Other published studies

There has been some doppler observations ,where there is a midventricular LV blood flow reversal in atrial fibrillation that could  explain the pulse deficit . Mechanism of production of pulse deficit in atrial fibrillation: assessment by blood flow dynamics

Second Department of Internal Medicine, Kagoshima University School of Medicine.


What is the clinical significance of pulse deficit ?

Currently there is no great clinical significance of this phenomenon. But an astute clinician will pick up this sign and it may indicate underlying LV dysfunction. In patients with PPM,  pulse deficit  suggests  pacemaker malfunction .Some patients with cardiac tamponade &  pulsus paradoxus  systolic  blood pressure falls too low to make the pulse feeble or not palpable in the periphery .This situation may mimic a pulse deficit if not recognised.

Dr.S.Venkatesan ,Madras Medical College , Chennai, India

* What is the evidence for intermittent absence or feeble Aortic valve opening in Atrial fibrillation ? I could find this from the book written by Harvey Feigenbaum. whom we consider Father of Echocardiography



Read Full Post »